Leçon 322
Exercices sur les formes quadratiques.
CVA (2019) p. 93+
Présenté par Julien en 2023
Leçons : 111 - 117 - 118 - 119 - 121 - 122 - 308 - 316 - 317 - 318 - 320 - 322
Mots-clefs : valeurs propres, diagonalisation, trigonalisation, polynômes, nilpotence, orthogonalité, formes quadratiques.
Présentation : Soit 𝐸 un ℝ−𝑒𝑣 de dimension finie 𝑛∈ℕ∗ et 𝐴∈ℳ𝑛(ℝ) une matrice dont le polynôme caractéristique 𝜒𝐴 est scindé.
On peut aussi considérer un ℂ−𝑒𝑣 auquel cas, le polynôme caractéristique est directement scindé par d’Alembert-Gauss.
Le critère de Klarès est une condition nécessaire et suffisante sur une égalité de noyaux pour que 𝐴 soit diagonalisable.
Bilan : assez large et adaptable en terme de contenu et plutôt facile à restituer en 15 minutes.
Illustration : aucun
Le critère de Klarès de diagonalisation
Analystan p. 159+, CVA p. 145+
Présenté par Julien en 2023
Leçons : 115 - 117 - 120 - 121 - 221 - 226 - 301 - 309 - 316 - 318 - 320 - 322 - 327 - 432
Mots-clefs : décomposition polaire, orthogonalité, compacité, valeurs propres, diagonalisation, norme matricielle, factorisation de matrices, linéarité et bilinéarité
Présentation : Tout en travaillant sur de la topologie et sur la décomposition polaire, il s'agit ici de démontrer une inégalité de distance d'une matrice à un fermé. On s'intéressera également au cas d'égalité.
Bilan : Un développement assez touffu et complet. Très rentable.
Illustration : Python
La matrice orthogonale la plus proche
CVA p. 115+
Présenté par Louis-Dominique en 2023
Leçons : 112 - 116 - 120 - 127 - 311 - 313 - 319 - 322
Mots-clefs : déterminant, formes quadratiques, rang et changements de bases, matrice symétrique réelle, classification, orthogonalité.
Présentation : Après démonstration d'un lemme faisant le lien entre définie positive et les mineurs principaux d'une matrice symétrique réelle, on calcule la signature de cette matrice.
Bilan : assez difficile en terme de contenu, mais plutôt facile à restituer en 15 minutes.
Illustration : aucune