Leçon 317

Exercices utilisant la notion d'endomorphisme nilpotent.

CVA (2019) p. 93+

Présenté par Julien en 2023

Leçons : 111 - 117 - 118 - 119 - 121 - 122 - 308 - 316 - 317 - 318 - 320 - 322

Mots-clefs : valeurs propres, diagonalisation, trigonalisation, polynômes, nilpotence, orthogonalité, formes quadratiques.

Présentation : Soit 𝐸 un ℝ−𝑒𝑣 de dimension finie 𝑛∈ℕ∗ et 𝐴∈ℳ𝑛(ℝ) une matrice dont le polynôme caractéristique 𝜒𝐴 est scindé.
On peut aussi considérer un ℂ−𝑒𝑣 auquel cas, le polynôme caractéristique est directement scindé par d’Alembert-Gauss.
Le critère de Klarès est une condition nécessaire et suffisante sur une égalité de noyaux pour que 𝐴 soit diagonalisable.

Bilan : assez large et adaptable en terme de contenu et plutôt facile à restituer en 15 minutes.

Illustration : aucun

Critère de Klarès (Julien).pdf

Le critère de Klarès de diagonalisation

CVA p. 20+

Présenté par Louis-Dominique en 2023

Leçons : 108 - 109 - 112 - 113 - 117 - 118 - 122 - 308 - 312 - 314 - 316 - 317 - 318 - 319 

Mots-clefs : déterminants, système et Vandermonde, formes linéaires et polynômes, valeurs propres, th. Cayley-Hamilton.

Présentation : Soit 𝐴∈ℳ𝑛(ℂ). On montre la proposition : ∀𝑘∈⟦1,𝑛⟧, 𝑇𝑟(𝐴𝑘 ) = 0 ⇒ 𝐴 nilpotente. Ensuite, une application sur les espaces de matrices nilpotentes vient clore ce développement.

Bilan : complet et facilement restituable en 15 minutes.

Illustration : aucune

2024 Dev_Critère de Nilpotence par la trace (LD).pdf

X-ENS Alg 2 p. 247

Présenté par Louis-Dominique en 2025

Leçons : 117 - 118 - 119 - 121 - 122 - 311 - 312 - 316 - 317 - 318 - 320

Mots-clefs : diagonalisation, trigonalisation, décomposition de Dunford, matrice nilpotentes, valeurs propres

Présentation : Soit 𝑛 ∈ ℕ et 𝐴 ∈ ℳ𝑛(ℂ).

On va montrer que exp(𝐴) = 𝐼𝑛, si et seulement si, 𝐴 est diagonalisable et 𝑆𝑝(𝐴) ⊂ 2𝑖𝜋ℤ.

Bilan : assez dense en terme de contenu, mais plutôt facile à restituer en 15 minutes.

Illustration : aucune

2025 Dev_exp(A)=I_n (LD).pdf

exp(A) = In