Théorème de Kronecker
Théorème de Kronecker
CVA p. 30+
CVA p. 30+
Présenté par Louis-Dominique en 2024
Leçons : 108 - 109 - 112 - 117 - 118 - 119 - 121 - 123 - 131 - 301 - 309 - 311 - 312 - 316 - 318 - 319
Mots-clefs : relations coefficients-racines, valeurs propres, diagonalisation et trigonalisation
Présentation : Soit 𝒫 l’ensemble des polynômes unitaires 𝑃 de ℤ[𝑋] tels que toute racine 𝑧 de 𝑃 est de module |𝑧|≤1. Après avoir montré que l’ensemble 𝒫𝑛 des polynômes 𝒫 de degré 𝑛>0 est fini, on en déduit que si 𝑧 est racine de 𝒫𝑛, alors 𝑧=0 ou 𝑧 est racine de l’unité.
Bilan : Un développement assez technique, mais facile à restituer en 15 minutes.
Illustration : aucune.