Leçon 409
Exemples d’étude de fonctions définies par une série.
Dantzer p. 404+, Analystan p. 91+
Présenté par Caroline en 2022
Leçons : 201 - 202 - 211 - 213 - 402 - 404 - 409 - 411 - 434
Mots-clefs : polynômes, intégrales, série de Fourier, théorème de Dirichlet, IPP.
Présentation : On va montrer que pour tout 𝑘∈ℕ∗, on peut calculer la valeur exacte de 𝜁(2𝑘) avec 𝐵2𝑘(0) où 𝜁 est la fonction zêta de Riemann et (𝐵𝑛)𝑛∈ℕ la suite des polynômes de Bernoulli.
Bilan : assez abordable en terme de contenu, mais plutôt difficile à restituer en 15 minutes.
Illustration : Python
Analystan p. 88+
Présenté par Eric en 2022
Leçons : 211 - 213 - 406 - 408 - 409 - 411 - 413
Mots-clefs : suites, coefficients et série de Fourier, intégrale de Dirichlet, CSSA, somme de Riemann.
Présentation : On va mettre en évidence le phénomène de Gibbs sur une fonction de type « signal carré » : 𝑓 une fonction impaire et 2𝜋− périodique définie sur ℝ par 𝑓(𝑡) =1, si 𝑡∈]0;𝜋[ et 𝑓(0) =𝑓(𝜋)=0.
Bilan : Assez technique et difficile à restituer en 15 minutes.
Illustration : Python & Geogebra
Phénomène de Gibbs - Vidéo version Ketrane
Pulkowski ex 125 p. 586+
Présenté par François en 2024
Leçons : 212 – 228 – 230 – 409 – 410 – 425 – 426
Mots-clefs : variables aléatoires, indépendance, espérance, variance, séries entières.
Présentation : On réalise des lancers successifs d’une pièce équilibrée jusqu’à obtenir la séquence « Pile-Face ». On note T la variable aléatoire réelle comptant le nombre de lancers effectués correspondants à cette expérience. On cherche à déterminer la loi de T, son espérance et sa variance.
Bilan : rentable , large et plutôt facile à restituer en 15 minutes.
Illustration : Python
Pile ou Face ?