Leçon 217

Fonctions convexes d’une variable réelle. Applications. 

Analystan p. 128+

Présenté par Louis-Dominique en 2023

Leçons : 217 - 223 - 244 - 267 - 423 - 427 - 434 - 436 - 447

Mots-clefs : convergence, théorème de convergence dominée, IPP, convexité, continuité, intégrabilité.

Présentation : Montrer la définition de Gamma d'Euler par les produits infinis, puis de montrer que toute fonction 𝑓, 𝒞1 et log-convexe telle que 𝑓(𝑥+1)=𝑥𝑓(𝑥) est proportionnelle à Γ.

Bilan : rentable et surtout adaptable suivant la leçon.

Illustration : Python

Kieffer p. 339+, Ketrane p. 253+

Présenté par Louis-Dominique en 2023

Leçons : 201 - 207 - 208 - 216 - 217 - 218 - 251 - 256 - 263 - 403 - 415 - 432 - 443 - 444

Mots-clefs : TVI, Taylor-Lagrange, convergence des suites, point fixe.

Présentation : La méthode de Newton permet de rapidement approcher le zéro d’une fonction sur un intervalle 𝐼⊂ℝ. Majoration de l'erreur.

Bilan : indispensable et plutôt facile à restituer en 15 minutes.

Illustration : Python & Geogebra

2023 Dev_Methode de Newton (LD).pdf

Méthode de Newton